A rice heterochronic mutant, mori1, is defective in the juvenile-adult phase change.

نویسندگان

  • Kazumi Asai
  • Namiko Satoh
  • Haruto Sasaki
  • Hikaru Satoh
  • Yasuo Nagato
چکیده

We have identified five recessive allelic mutations, mori1-1 to mori1-5, which drastically modify the shoot architecture of rice. The most remarkable feature of mori1 plants is a rapid production of small leaves and short branches. The mori1 plants are about 5 cm in height even 7 months after sowing. No reproductive growth was attained in mori1 plants even if inductive short-day treatment was applied. Leaves of mori1 at any position were very small and the size and shape were comparable to those of the wild-type 2nd leaf. The stem of mori1 7 months after sowing did not differentiate node and internode and had randomly oriented vascular bundles, which were characteristic of the basal part of the wild-type stem where 2nd and 3rd leaves were inserted. These structural characteristics indicate that mori1 maintains the 2nd-leaf stage (juvenile phase) of the wild type. The short plastochron and high cell division activity in the shoot apical meristem further confirmed the juvenility of mori1, corresponding to the 2nd-leaf-differentiation stage in the wild-type embryo. Furthermore, the apparent photosynthetic rate in mori1 leaves was low as in the wild-type 2nd leaf. Thus, mori1 is a heterochronic mutation that suppresses the induction of adult phase and the termination of the juvenile phase. Therefore, MORI1 plays an important role in the juvenile-adult phase change. The importance of heterochronic mutations in modifying shoot architecture is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jasmonate regulates juvenile-to-adult phase transition in rice.

Juvenile-to-adult phase transition is an important shift for the acquisition of adult vegetative characteristics and subsequent reproductive competence. We identified a recessive precocious (pre) mutant exhibiting a long leaf phenotype in rice. The long leaf phenotype is conspicuous in the second to the fourth leaves, which are juvenile and juvenile-to-adult transition leaves. We found that mor...

متن کامل

Makorin ortholog LEP-2 regulates LIN-28 stability to promote the juvenile-to-adult transition in Caenorhabditis elegans.

The heterochronic genes lin-28, let-7 and lin-41 regulate fundamental developmental transitions in animals, such as stemness versus differentiation and juvenile versus adult states. We identify a new heterochronic gene, lep-2, in Caenorhabditis elegans. Mutations in lep-2 cause a delay in the juvenile-to-adult transition, with adult males retaining pointed, juvenile tail tips, and displaying de...

متن کامل

Rice osa-miR171c Mediates Phase Change from Vegetative to Reproductive Development and Shoot Apical Meristem Maintenance by Repressing Four OsHAM Transcription Factors

Phase change from vegetative to reproductive development is one of the critical developmental steps in plants, and it is regulated by both environmental and endogenous factors. The maintenance of shoot apical meristem (SAM) identity, miRNAs and flowering integrators are involved in this phase change process. Here, we report that the miRNA osa-miR171c targets four GRAS (GAI-RGA-SCR) plant-specif...

متن کامل

Identification of heterochronic mutants in Caenorhabditis elegans. Temporal misexpression of a collagen::green fluorescent protein fusion gene.

The heterochronic genes lin-4, lin-14, lin-28, and lin-29 specify the timing of lateral hypodermal seam cell terminal differentiation in Caenorhabditis elegans. We devised a screen to identify additional genes involved in this developmental timing mechanism based on identification of mutants that exhibit temporal misexpression from the col-19 promoter, a downstream target of the heterochronic g...

متن کامل

The early phase change gene in maize.

Recessive mutations of the early phase change (epc) gene in maize affect several aspects of plant development. These mutations were identified initially because of their striking effect on vegetative phase change. In certain genetic backgrounds, epc mutations reduce the duration of the juvenile vegetative phase of development and cause early flowering, but they have little or no effect on the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 129 1  شماره 

صفحات  -

تاریخ انتشار 2002